Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Coordinate Geometry
0 votes

The centre of the circle passes through $(0,0)$ and $(1,0)$ and touching the circle $x^2+y^2=9$ is

$\begin{array}{1 1}(A)\;\bigg(\frac{1}{2},\frac{1}{2}\bigg) \\(B)\;\bigg(\frac{1}{2},-\sqrt 2\bigg) \\(C)\;\bigg(\frac{3}{2},\frac{1}{2}\bigg) \\(D)\;\bigg(\frac{1}{2},\frac{3}{2}\bigg) \end{array}$

Can you answer this question?

1 Answer

0 votes
Let the requirement circle be
Since it passes through $(0,0)$ and $(1,0)$
=> $C=0$ and $g=\large\frac{-1}{2}$
Points $(0,0)$ and $(1,0)$ lie inside the circle $x^2+y^2=9$ So two circles touch internally
=> $C_1C_2= r_1-r_2$
$\sqrt {g^2+f^2}=3 -\sqrt {g^2+f^2}$
=> $ \sqrt {g^2+f^2}=\large\frac{3}{2}$
=> $ f^2=\large\frac{9}{4}-\frac{1}{4}$$=2$
Hence the centres of required circle are $\bigg(\large\frac{1}{2},$$-\sqrt 2\bigg)$
Hence B is the correct answer.
answered Apr 8, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App