Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

The complex numbers $\sin x+i\cos 2x$ and $\cos x-i\sin 2x$ are conjugate for

$\begin{array}{1 1}(A) x=0 \\ (B)x=\large\frac{n \pi}{2} +\frac{\pi}{2} n \in I \\ (C) x= n \pi n \in I \\(D) No\;value\;of\;x \end{array}$

Can you answer this question?

1 Answer

0 votes
$\sin x+i\cos 2x=\cos x-i\sin 2x$
$\Rightarrow \sin x-i\cos 2x=\cos x-i\sin 2x$
$\Rightarrow \sin x=\cos x$ and $\cos 2x=\sin 2x$
$\Rightarrow \tan x=1$ and $\tan 2x=1$
$\Rightarrow$ No value of $x$ is possible
Hence (D) is the correct answer.
answered Apr 9, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App