Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Let $z,\omega$ be two comlex numbers such that $\overline{z}+i\overline{\omega}=0$ and $arg(z\omega)=\pi$, then $arg(z)$ equal to

$\begin{array}{1 1}(A)\large\frac{\pi}{4} \\ (B) \large\frac{\pi}{2} \\ (C) \large\frac{3 \pi}{4}\\(D) \large\frac{5 \pi}{4} \end{array}$

Can you answer this question?

1 Answer

0 votes
Taking conjugate $\Rightarrow z-i\omega=0$
$\Rightarrow arg(\large\frac{z^2}{i})=\pi$
$\Rightarrow 2arg(z)-arg(i)=\pi$
$\Rightarrow 2arg(z)=\pi+\large\frac{\pi}{2}=\frac{3\pi}{2}$
$\Rightarrow arg(z)=\large\frac{3\pi}{4}$
Hence (C) is the correct answer.
answered Apr 9, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App