Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Coordinate Geometry
0 votes

In the parabola $y^2=4ax$ , the length of the chord passing through the vertex and inclined to the x-axis at an angle $\theta$ is

$\begin{array}{1 1}(A)\;4a \cos \theta /\sin ^2 \theta \\(B)\;4a \sin \theta / \cos ^2 \theta \\(C)\;a \sec^2 \theta\\(D)\;a cosec ^2 \theta \end{array}$

Can you answer this question?

1 Answer

0 votes
Vertex $=(0,0)$
$m= \tan \theta$
Hence equation of the chord is $y=(\tan \theta)x$
Put in (i) we have $\tan ^2 \theta (x^2)=4ax$
=> $x= \large\frac{4a}{\tan ^2 \theta}$
$y= \large\frac{4a}{\tan \theta}$
Length of the chord $=\sqrt {\bigg(\large\frac{4a}{\tan 2t} \bigg)^2+\bigg(\large\frac{4a}{\tan \theta}\bigg)^2}$
$\qquad= \large\frac{4a}{\tan ^2 \theta} $$ \sqrt {1+\tan ^2 \theta}$
$\qquad= \large\frac{4a \cos ^2 \theta}{\sin ^2t } \times \large\frac{1}{\cot \theta}$
$\qquad= \large\frac{4a \cos \theta}{\sin ^2 \theta}$
Hence A is the correct answer.
answered Apr 9, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App