logo

Ask Questions, Get Answers

X
 

Express the complex number $(\large\frac{1}{5} + i\large\frac{2}{5})-(4 + i (\large\frac{5}{2}))$ in the form $a+ib$

$(a)\;- \large\frac{11}{5} - \large\frac{21}{5}i\qquad(b)\;- \large\frac{19}{5} - \large\frac{21}{10}i\qquad(c)\;- \large\frac{18}{5} - \large\frac{21}{10}i\qquad(d)\;- \large\frac{19}{10} - \large\frac{21}{5}i$

1 Answer

Answer : $\;- \large\frac{19}{5} - \large\frac{21}{10}i$
Explanation :
$ (\large\frac{1}{5} +i \large\frac{2}{5})-(4+ i (\large\frac{5}{2})) = \large\frac{1}{5} + \large\frac{2}{5} i -4 - \large\frac{5}{2}i$
$ = (\large\frac{1}{5}-4) + i (\large\frac{2}{5} - \large\frac{5}{2})$
$ = - \large\frac{19}{5} +i (-\large\frac{21}{10} )$
$=- \large\frac{19}{5} - \large\frac{21}{10}i$
answered Apr 9, 2014 by yamini.v
 

Related questions

Download clay6 mobile appDownload clay6 mobile app
...
X