logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Limits and Derivatives
0 votes

Find the derivative of $ \cos\: x$ from first principle.

Can you answer this question?
 
 

1 Answer

0 votes
Let $f(x) = \cos\: x$ from first principle.
$ f'(x) = \lim\limits_{h \to 0} \large\frac{f(x+h)-f(x)}{h}$
$ = \lim\limits_{h \to 0} \large\frac{\cos (x+h)-\cos (x)}{h}$
$ = \lim\limits_{h \to 0} \bigg[ \large\frac{\cos x \: \cos h-\sin x \: \sin h - \cos x }{h}\bigg]$
$ = \lim\limits_{h \to 0} \bigg[ \large\frac{-\cos x (1- \cos h)-\sin x \: \sin h }{h}\bigg]$
$ = \lim\limits_{h \to 0} \bigg[ \large\frac{-\cos x (1- \cos h) }{h}$$-\Large\frac{-\sin x \: \sin h}{h}\bigg]$
$ = - \cos x \bigg( \lim\limits_{h \to 0} \large\frac{1- \cos h}{h} \bigg)$$-\sin x \lim\limits_{h \to 0} \bigg( \large\frac{\sin h}{h} \bigg)$
$ = -\cos x(0)- \sin x (1) \qquad \bigg[ \lim\limits_{h \to 0} \large\frac{1-\cos h}{h}$$=0 \: and \: \lim\limits_{h \to 0} \large\frac{\sin h}{h}=1 \bigg]$
$ = - \sin x$
$ \therefore f'(x) = - \sin x$
answered Apr 9, 2014 by thanvigandhi_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...