Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Express the given complex number in the form $\;a+ib : (-2-\large\frac{1}{3} \normalsize i)^{3}$

$(a)\;-\large\frac{107}{3} \normalsize-\large\frac{22}{27} \normalsize i\qquad(b)\;-\large\frac{107}{27} \normalsize-\large\frac{22}{3} i \qquad(c)\;-\large\frac{22}{3} \normalsize-\large\frac{107}{27} \normalsize i\qquad(d)\;-\large\frac{11}{3} \normalsize-\large\frac{107}{27} \normalsize i$

Can you answer this question?

1 Answer

0 votes
Answer : $\;-\large\frac{22}{3} \normalsize-\large\frac{107}{27} \normalsize i$
Explanation :
$(-2-\large\frac{1}{3} \normalsize i)^{3} = (-1)^{3}\;(1 \normalsize+\large\frac{1}{3} \normalsize i)$
$=-[2^{3} +(\large\frac{i}{3})^{3} + \normalsize (3) \normalsize (2) \normalsize (\large\frac{i}{3})(\normalsize 2+\large\frac{i}{3})]$
$=-[8+\large\frac{i^3}{27}+\normalsize 2i(2+\large\frac{i}{3})]$
$=-[8-\large\frac{i}{27} + \normalsize 4i +\large\frac{2i^2}{3}] $
$=-\large\frac{22}{3} - \large\frac{107}{27} \normalsize i$
answered Apr 9, 2014 by yamini.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App