Chat with tutor

Ask Questions, Get Answers

Questions  >>  CBSE XII  >>  Math  >>  Model Papers

Assume that the chances of a patient having a heart attack is 40%. It is assumed that a meditation and yoga course reduce the risk of heart attack by 30% and prescription of certain drug reduces its chance by 25%. At a time, a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga?

1 Answer

  • According to Bayes Theorem, if $E_1, E_2, E_3.....E_n$ are a set of mutually exclusive and exhaustive events, then $P\left(\large \frac{E_i}{E}\right ) = \Large \frac{P\left(\frac{E}{E_i}\right ). P(E_i)} {\sum_{i=1}^{n} (P\left(\frac{E}{E_i}\right ).P(E_i))}$
Let $E_1$ be the event that the person follows yoga and medication, $E_2$ be the event that the person took prescription drugs. Let E be the event that the person has a heart attack. We need to find the probability that the person followed yoga and medication given certain conditions.
$E_1$ and $E_2,$ are a set of mutually exclusive and exhaustive events, so we can use Bayes Theorem to caclulate the conditional probability $P\left(\large \frac{E_i}{E}\right ) = \Large \frac{P\left(\frac{E}{E_i}\right ). P(E_i)} {\sum_{i=1}^{n} (P\left(\frac{E}{E_i}\right ).P(E_i))}$
Let us first caculate $P \large(\frac{E}{E_i})$:
$P \large(\frac{E}{E_1}) =$ 40% (1 - 30%) = 28% = $\large\frac{28}{100}$
$P \large(\frac{E}{E_2}) =$ 40% (1 - 25%) = 30% = $\large\frac{30}{100}$
Also, $ P (E_1) = P (E_2) = \large\frac{1}{2}$
P (probability that the person who had heart attach followed meditation and yoga) = $P\left(\large \frac{E_1}{E}\right )$
$P\left(\large \frac{E_2}{E}\right ) = \Large \frac{P\left(\frac{E}{E_2}\right ). P(E_2)} {\sum_{i=1}^{4} (P\left(\frac{E}{E_i}\right ).P(E_i))}$,
$= \large\frac{\frac{28}{200}}{\frac{28}{200}+\frac{30}{200}} = \frac{28}{28+30} = \frac{14}{29}$
Help Clay6 to be free
Clay6 needs your help to survive. We have roughly 7 lakh students visiting us monthly. We want to keep our services free and improve with prompt help and advanced solutions by adding more teachers and infrastructure.

A small donation from you will help us reach that goal faster. Talk to your parents, teachers and school and spread the word about clay6. You can pay online or send a cheque.

Thanks for your support.
Please choose your payment mode to continue
Home Ask Homework Questions
Your payment for is successful.
Clay6 tutors use Telegram* chat app to help students with their questions and doubts.
Do you have the Telegram chat app installed?
Already installed Install now
*Telegram is a chat app like WhatsApp / Facebook Messenger / Skype.