Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Find the multiplicative inverse of the complex number $\;\normalsize 4-\normalsize 3 \normalsize i\;$

$(a)\; \normalsize \large\frac{2}{25}+\normalsize \large\frac{3}{25} \normalsize i\qquad(b)\; \normalsize \large\frac{4}{25}+\normalsize \large\frac{3}{25} \normalsize i\qquad(c)\; \normalsize \large\frac{3}{25}+\normalsize \large\frac{2}{25} \normalsize i\qquad(d)\; \normalsize \large\frac{4}{25}+\normalsize \large\frac{2}{25} \normalsize i$

Can you answer this question?

1 Answer

0 votes
Answer : $ \;\normalsize \large\frac{4}{25}+\normalsize \large\frac{3}{25} \normalsize i$
Explanation :
Let $\;z=\normalsize 4-\normalsize 3 \normalsize i\; $
Then , $\;\overline{z} =\;\normalsize 4-\normalsize 3 \normalsize i\;and \; |z|^{2} = 4^{2} +(-3)^{2}$
Therefore , the multiplicative inverse of $\;\normalsize 4-\normalsize 3 \normalsize i\;$ is given by
$z^{-1} =\large\frac{\overline{z}}{|z|^{2}} =\large\frac{\normalsize 4-\normalsize 3 \normalsize i}{\normalsize 25}$
$= \normalsize \large\frac{4}{25}+\normalsize \large\frac{3}{25} \normalsize i$
answered Apr 10, 2014 by yamini.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App