Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

If $z$ is a complex number having least absolute value and $|z-2+2i|=1$ then $z=$

$\begin{array}{1 1}(A)\;(2-\large\frac{1}{\sqrt 2})\normalsize (1-i)\\(B)\;(2-\large\frac{1}{\sqrt 2})\normalsize (1+i)\\(C)\;(2+\large\frac{1}{\sqrt 2})\normalsize (1-i)\\(D)\;(2+\large\frac{1}{\sqrt 2})\normalsize (1+i)\end{array} $

Can you answer this question?

1 Answer

0 votes
$|z-2+2i|=1$ represents a circle with centre $(2,-2)$ and radius 1 in arg and plane
Direction of $z=\large\frac{1-i}{\sqrt 2}$
Magnitude of $z=\sqrt{(2)^2+(-2)^2}-1$
$\Rightarrow 2\sqrt 2-1$
$z=(2\sqrt 2-1)(\large\frac{1-i}{\sqrt 2})$$=(2-\large\frac{1}{\sqrt 2})$$(1-i)$
Hence (A) is the correct answer.
answered Apr 10, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App