$\begin{array}{1 1}(A)\;3x^2+6y^2=33 \\(B)\;5x^2+3y^2=48 \\(C)\;3x^2+5y^2=32 \\(D)\;none\;of\;these \end{array}$

Want to ask us a question? Click here

Browse Questions

Ad |

0 votes

0 votes

Let the equation of the required ellipse be $\large\frac{x^2}{a^2}+\frac{y^2}{b^2}$$=1$

As it passses through $(-3,1)$ we get,

$\large\frac{9}{a^2}+\frac{1}{b^2}$$=2$

=> $9b^2+a^2=a^2b^2$

=> $9a^2(1-e^2)+a^2=a^2.a^2(1-e^2)$

=> $9a^2(1- \large\frac{2}{5})$$+a^2=a^4(1- \large\frac{2}{5})$

=> $a^2=\large\frac{32}{5}$

Now $b^2=a^2(1-e^2)$

=> $b^2=\large\frac{32}{3} (1-\large\frac{2}{5})$

$\qquad= \large\frac{32}{5}$

Hence the equation of required ellipse is

$\large\frac{x^2}{\Large\frac{32}{3}}+\frac{y^2}{\Large\frac{32}{5}}$$=1$

(or) $3x^2+5y^2=32$

Hence C is the correct answer.

Ask Question

Take Test

x

JEE MAIN, CBSE, NEET Mobile and Tablet App

The ultimate mobile app to help you crack your examinations

...