Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

The maximum distance from origin to the point z satisfying the equation $\big|z+\large\frac{1}{z}\big|=a$ is

$\begin{array}{1 1}(A)\;\large\frac{1}{2}\normalsize (\sqrt{a^2+1}+a)&(B)\;\large\frac{1}{2}\normalsize (\sqrt{a^2+2}+a)\\(C)\;\large\frac{1}{2}\normalsize (\sqrt{a^2+4}+a)&(D)\;\text{None of these}\end{array} $

Can you answer this question?

1 Answer

0 votes
Let $z=r(\cos\theta+i\sin\theta)$
$\big|z+\large\frac{1}{z}\big|$$=a\Rightarrow \big|z+\large\frac{1}{z}\big|^2$$=a^2$
$\Rightarrow r^2+\large\frac{1}{r^2}$$+2\cos 2\theta=a^2$
Clearly r is maximum for $\theta=\large\frac{\pi}{2}$
$\Rightarrow r=\large\frac{a+\sqrt{a^2+4}}{2}$
Hence (C) is the correct answer.
answered Apr 10, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App