Email
Chat with tutor
logo

Ask Questions, Get Answers

X
 
Answer
Comment
Share
Q)

Express the following expression in the form $\;\normalsize a + \normalsize ib : \large\frac{(\normalsize 3 + \normalsize i \sqrt{5})(\normalsize 3 - \normalsize i \sqrt{5})}{(\normalsize \sqrt{3} + \normalsize i \sqrt{2})-(\normalsize \sqrt{3} - \normalsize i \sqrt{2})}$

$(a)\;-\large\frac{5\sqrt{2}}{2} \normalsize i\qquad(b)\;-\large\frac{7\sqrt{2}}{2} \normalsize i\qquad(c)\;-\large\frac{9\sqrt{2}}{2} \normalsize i\qquad(d)\;-\large\frac{3\sqrt{2}}{2} \normalsize i$

1 Answer

Comment
A)
Answer : $\;-\large\frac{7\sqrt{2}}{2} \normalsize i$
Explanation :
$\large\frac{(\normalsize 3 + \normalsize i \sqrt{5})(\normalsize 3 - \normalsize i \sqrt{5})}{(\normalsize \sqrt{3} + \normalsize i \sqrt{2})-(\normalsize \sqrt{3} - \normalsize i \sqrt{2})}= $
$=\large\frac{(3)^{2}-(\sqrt{5})^{2}}{\sqrt{3}+\sqrt{2} i -\sqrt{3}+\sqrt{2}i}\qquad [(a+b)(a-b)=a^2-b^2]$
$= \large\frac{9-5i^{2}}{2\sqrt{2}i}$
$= \large\frac{9+5}{2 \sqrt{2} i} \times \large\frac{i}{i}\qquad [i^{2}=-1]$
$= \large\frac{14}{2 \sqrt{2} i^2}$
$ =- \large\frac{7i}{\sqrt{2}} \times \large\frac{\sqrt{2}}{\sqrt{2}}$
$=-\large\frac{7\sqrt{2}}{2} \normalsize i$
Help Clay6 to be free
Clay6 needs your help to survive. We have roughly 7 lakh students visiting us monthly. We want to keep our services free and improve with prompt help and advanced solutions by adding more teachers and infrastructure.

A small donation from you will help us reach that goal faster. Talk to your parents, teachers and school and spread the word about clay6. You can pay online or send a cheque.

Thanks for your support.
Continue
Please choose your payment mode to continue
Home Ask Homework Questions
Your payment for is successful.
Continue
Clay6 tutors use Telegram* chat app to help students with their questions and doubts.
Do you have the Telegram chat app installed?
Already installed Install now
*Telegram is a chat app like WhatsApp / Facebook Messenger / Skype.
...