Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Coordinate Geometry
0 votes

The locus of the mid -point of the portion of the tangents to the ellipse intercepted between the axes is

$\begin{array}{1 1}(A)\;a^2y^2+b^2x^2 =4x^2y^2 \\(B)\;a^2x^2+b^2y^2=4x^2y^2 \\(C)\;x^2+y^2=a^2 \\(D)\;x^2+y^2=b^2 \end{array}$

Can you answer this question?

1 Answer

0 votes
Any tangent to the ellipse is $\large\frac{x}{a}$$ \cos \theta+ \large\frac{y}{b}$$ \sin \theta=1$
It meets the axes at $A \bigg( \large\frac{a}{\cos \theta}, 0 \bigg)$$ B\bigg( 0, \large\frac{b}{\sin \theta} \bigg)$
If $(h,k)$ be the mid - point of AB then
$2h=\large\frac{a}{\cos \theta}$
$2k=\large\frac{b}{\sin \theta}$
$\therefore \cos \theta=\large\frac{a}{2h} \qquad $$\sin \theta =\large\frac{b}{2k}$
$\therefore \cos ^2 \theta +\sin ^2 \theta=1$
$\therefore \large\frac{a^2}{4h^2} +\frac{b^2}{4k^2}$$=1$
or $a^2y^2+b^2x^2=4x^2y^2$
Hence A is the correct answer.
answered Apr 10, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App