Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Coordinate Geometry
0 votes

Find the equation of the hyperbola with focus $(2,2) \; e=2$ and directrise $x+y=9$

$\begin{array}{1 1}(A)\;x^2+y^2+4xy-32x-32y+154=0 \\(B)\;x^2-y^2-4xy-32x-32y+154=0 \\(C)\;x^2-y^2-4xy+32x+32y+54=0 \\(D)\;x^2+y^2+4xy+32x+32y+80=0 \end{array}$

Can you answer this question?

1 Answer

0 votes
Let $P(x,y)$ be any point on the hyperbola
$\therefore \large\frac{\text{Distance of P from focus}}{\text{Distance from directrix}}$$=e$
=> $(x-2)^2+(y-2)^2=2^2 \bigg[ \large\frac{x+y-9}{\sqrt 2}\bigg]^2$
$x^2+4-4xy+y^2+4 -4y=4 \bigg[ \large\frac {x+y-81}{2}\bigg]$
$x^2+y^2-4x-4y+8= 2 [x^2+y^2+81+2xy-18y-18x]$
$x^2+y^2-4x-4y+8- 2x^2-2y^2-162-4xy+36y+36x=0$
Hence A is the correct answer.
answered Apr 10, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App