logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

If $\;z_{1}=2-i\;,z_{2}=1+i\;$ find $\;|\large\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+i}|$

$(a)\;0\qquad(b)\;1\qquad(c)\;\sqrt{3}\qquad(d)\;\sqrt{2}$

Can you answer this question?
 
 

1 Answer

0 votes
Answer : $\sqrt{2}$
Explanation :
$\;z_{1}=2-i\;,z_{2}=1+i\;$
Therefore ,
$\;|\large\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+i}|= | \large\frac{(2-i)+(1+i)+1}{(2-i)-(1+i)+i}|$
$= |\large\frac{4}{2-2i}|$
$= |\large\frac{4}{2(1-i)}|$
$ = |\large\frac{2}{1-i} \times \large\frac{1+i}{1+i}|$
$= |\large\frac{2(1+i)}{1^{2}-i^{2}}|$
$= |\large\frac{2(1+i)}{1+1}| \quad [i^2=-1]$
$= |\large\frac{2(1+i)}{2}| $
$ =|1+i| = \sqrt{1^{2}+1^{2}}$
$ = \sqrt{2}$
Thus ,the value of $\;|\large\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+i}|\;$ is $\;\sqrt{2}$
answered Apr 11, 2014 by yamini.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...