logo

Ask Questions, Get Answers

X
 

If $ y=|\cos x|+|\sin x|,\;find\; \Large\frac{dy}{dx}\; \normalsize at\;x=\Large\frac{2\pi}{3}$

1 Answer

Toolbox:
  • before differentiating eliminate modulus by its definition.
$ | cos\: x|=cosx\: when \: x \in \bigg[ 0, \large\frac{\pi}{2} \bigg]$
$ | sin\: x|=sinx\: when \: x \in [ 0, \pi ]$
$ | cos\: x|=-cosx\: when \: x \in \bigg[\large \frac{\pi}{2},\large \frac{3\pi}{2} \bigg]$
$ | sin\: x|=-sinx\: when \: x \in [ \pi, 2\pi ]$
 
$ \large\frac{2\pi}{3} \in \bigg[\large \frac{\pi}{2}, \pi \bigg]$
$ \Rightarrow y= -cosx+sinx$
$ \large\frac{dy}{dx}=sinx+cosx$
 
$ = \large\frac{\sqrt 3}{2}-\large\frac{1}{2}=\large\frac{\sqrt 3-1}{2}\: at \: x=\large\frac{2\pi}{3}$

 

answered Mar 9, 2013 by thanvigandhi_1
edited Mar 25, 2013 by thanvigandhi_1
 

Related questions

...