Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

If one root of $(a^2-5a+3)x^2+(3a-1)x+2=0$ is double the other,then the value of a is :

$\begin{array}{1 1}(A)\;\large\frac{2}{3}&(B)\;\large\frac{1}{3}\\(C)\;\large\frac{-1}{3}&(D)\;\large\frac{-2}{3}\end{array} $

Can you answer this question?

1 Answer

0 votes
Let the roots be $\alpha,2\alpha$
$(\alpha(2\alpha)=\large\frac{2}{a^2-5a+3}$$\Rightarrow \alpha^2=\large\frac{1}{a^2-5a+3}$
$\Rightarrow 3\alpha=(1-3a)\alpha^2\Rightarrow \alpha=\large\frac{3}{1-3a}$
$\Rightarrow 9a^2-45a+27=9a^2-6a+1$
$\Rightarrow 26=39a\Rightarrow a=\large\frac{2}{3}$
Hence (A) is the correct answer.
answered Apr 15, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App