logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

Given,$a(p+q)^2+2bpq+c=0$ and $a(p+r)^2+2bpr+c=0$.Then the value of qr is

$\begin{array}{1 1}(A)\;p^2+\large\frac{c}{a}&(B)\;p^2+\large\frac{a}{c}\\(C)\;p^2+\large\frac{b}{a}&(D)\;p^2+\large\frac{a}{b}\end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Roots of equation $a(p+x)^2+2bpx+c=0$ are q and r
$\Rightarrow a(p^2+x^2+2px)+2bpx+c=0$
Product of roots =$qr=\large\frac{c+ap^2}{a}$$=p^2+\large\frac{c}{a}$
Hence (A) is the correct answer.
answered Apr 15, 2014 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...