logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

Find the number of non - zero integral solutions of the equation $\;|1-i|^{x}=2^{x}$

$(a)\;1\qquad(b)\;0\qquad(c)\;2\qquad(d)\;4$

Can you answer this question?
 
 

1 Answer

0 votes
Answer : 0
Explanation :
$\;|1-i|^{x}=2^{x}$
$(\sqrt{1^{2}+(-1)^{2}})^{x} = 2^{x}$
$(\sqrt{2})^{x} =2^{x} $
$2^{\large\frac{x}{2}} = 2^{x}$
$\large\frac{x}{2} =x$
$x=2x$
$2x-x=0$
$x=0$
Thus , 0 is the integral solution of the given equation . Therefore , the number of non - zero integral solutions of the equation is 0
answered Apr 15, 2014 by yamini.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...