Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  AIMS
0 votes

If $\;(a+ib)(c+id)(e+if)(g+ih)\;=A+iB\;$ , then show that $\;(a^{2}+b^{2})(c^{2}+d^{2})(e^{2}+f^{2})(g^{2}+h^{2}) = A^{2}+B^{2}$


Can you answer this question?

1 Answer

0 votes
Answer : $\;A^{2}+B^{2}$
Explanation :
$\;(a^{2}+b^{2})(c^{2}+d^{2})(e^{2}+f^{2})(g^{2}+h^{2}) = A^{2}+B^{2}$
$\;|(a^{2}+b^{2})(c^{2}+d^{2})(e^{2}+f^{2})(g^{2}+h^{2})| = |A^{2}+B^{2}|$
$\;|(a^{2}+b^{2})| \times |(c^{2}+d^{2})| \times |(e^{2}+f^{2})| \times |(g^{2}+h^{2})| = |A^{2}+B^{2}|$
$\;\sqrt{(a^{2}+b^{2})} \times \sqrt{(c^{2}+d^{2})} \times \sqrt{(e^{2}+f^{2})} \times \sqrt{(g^{2}+h^{2})} = \sqrt{A^{2}+B^{2}}$
On squaring both sides , we obtain
$\;(a^{2}+b^{2})(c^{2}+d^{2})(e^{2}+f^{2})(g^{2}+h^{2}) = A^{2}+B^{2}$
answered Apr 15, 2014 by yamini.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App