Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Trigonometric Functions
0 votes

If in two circles arcs of the same length subtend angles $60^{\large\circ}$ and $75^{\large\circ}$ at the centre,find the ratio of their radii

$\begin{array}{1 1}(A)\;5 : 4&(B)\;4 : 5\\(C)\;5 : 3&(D)\;6 : 5\end{array} $

Can you answer this question?

1 Answer

0 votes
  • $\theta=\large\frac{l}{r}$
  • $\theta$=angle subtended by arc
  • $l$=length of the arc
  • $r$=radius of the circle
  • $1^{\large\circ}=(\large\frac{\pi}{180})$ radian=0.01746(approx)
Let the length of the circle be $l$
Angle of the circle 1 =$60^{\large\circ}$
Angle of the circle 2 =$75^{\large\circ}$
Let the radius be $r_1$ and $r_2$
$\Rightarrow r_1\times 60\times \large\frac{\pi}{180}$
$\Rightarrow \large\frac{\pi r_1}{3}$
$\Rightarrow r_2\times 75\times \large\frac{\pi}{180}$
$\Rightarrow \large\frac{5\pi r_2}{12}$
Since $l$ is same for both the circles
$\Rightarrow \large\frac{\pi r_1}{3}=\frac{5\pi r_2}{12}$
$\Rightarrow r_1 : r_2=5 : 4$
Hence (A) is the correct answer.
answered Apr 16, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App