Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Find real $\;\theta\;$ such that $\;\large\frac{3 +2i sin \theta}{1-2isin\theta}\;$ is purely real .

$(a)\;0\qquad(b)\;\pi\qquad(c)\;n\pi \;,n \in Z\qquad(d)\;i \pi$

Can you answer this question?

1 Answer

0 votes
Answer : $\;n \pi , n \in Z$
Explanation :
$\;\large\frac{3 +2i sin \theta}{1-2isin\theta}\;= \large\frac{3 +2i sin \theta}{1-2isin\theta} \times \large\frac{1+2i sin \theta}{1+2isin \theta}$
$ = \large\frac{3 + 6 i sin \theta + 2i sin \theta + 4i^{2} sin^{2} \theta} {1^{2} - (i sin \theta)^{2}}$
$= \large\frac{3 - 4 sin^{2} \theta}{1+ 4 sin^{2} \theta} + \large\frac{8i sin \theta}{ 1+4 sin^{2} \theta} $
We are given the complex number to be real , therefore
$ \large\frac{8 sin \theta}{ 1+4 sin^{2} \theta} =0$
i.e $\; sim \theta =0$
Then , $n \pi , n \in Z$
answered Apr 16, 2014 by yamini.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App