Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Trigonometric Functions
0 votes

Find the value : $\tan 15^{\large\circ}$

$\begin{array}{1 1}(A)\;2-\sqrt 3&(B)\;2+\sqrt 3\\(C)\;1+\sqrt 3&(D)\;1-\sqrt 3\end{array} $

Can you answer this question?

1 Answer

0 votes
  • $\tan (A-B)=\large\frac{\tan A-\tan B}{1+\tan A \tan B}$
$\tan 15^{\large\circ}=\tan(45^{\large\circ}-30^{\large\circ})$
$\Rightarrow \large\frac{\tan^{\large\circ}-\tan 30^{\large\circ}}{1+\tan 45^{\large\circ}.\tan 30^{\large\circ}}$
$\Rightarrow \large\frac{1-\large\frac{1}{\sqrt 3}}{1+1\times \large\frac{1}{\sqrt 3}}=\large\frac{\Large\frac{\sqrt 3-1}{\sqrt 3}}{\Large\frac{\sqrt 3-1}{\sqrt 3}}$
$\Rightarrow \large\frac{\sqrt 3-1}{\sqrt 3+1}$
Multiplying both numerator and denominator by $\sqrt 3-1$
$\large\frac{\sqrt 3-1}{\sqrt 3+1}\times \frac{\sqrt 3-1}{\sqrt 3-1}=\frac{(\sqrt 3-1)^2}{(\sqrt 3)^2-1^2}$
$\Rightarrow \large\frac{(\sqrt 3)^2-2\sqrt 3+1^2}{3-1}$
$\Rightarrow \large\frac{3-2\sqrt 3+1}{2}$
$\Rightarrow \large\frac{4-2\sqrt 3}{2}$
$\Rightarrow \large\frac{2(2-\sqrt 3)}{2}$
$\Rightarrow 2-\sqrt 3$
Hence (A) is the correct answer.
answered Apr 17, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App