logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Trigonometric Functions
0 votes

Prove : $\large\frac{\cos(\pi+x)\cos(-x)}{\sin (\pi-x)\cos(\large\frac{\pi}{2}+\normalsize x)}=$$\cot^2x$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $\cos(\pi+x)=-\cos x,\cos(-x)=\cos x$
  • $\sin (\pi-x)=\sin x,\cos(\large\frac{\pi}{2}+$$x)=-\sin x$
L.H.S
$\large\frac{\cos(\pi+x)\cos(-x)}{\sin (\pi-x)\cos(\large\frac{\pi}{2}+\normalsize x)}=\frac{-\cos x.\cos x}{\sin x.-\sin x}$
$\Rightarrow \large\frac{-\cos^2x}{-\sin^2x}$
$\Rightarrow \cot^2x$=R.H.S
Hence proved
answered Apr 17, 2014 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...