logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Trigonometric Functions
0 votes

Prove : $\sin(n+1)x\sin(n+2)x+\cos(n+1)x\cos(n+2)x=\cos x$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $\cos(A-B)=\cos A.\cos B+\sin A\sin B$
L.H.S
$\sin(n+1)x\sin(n+2)x+\cos(n+1)x\cos(n+2)x$
Put $(n+2)x=A,(n+1)x=B$
$\sin A.\sin B+\cos A\cos B=\cos(A-B)$
$\therefore \cos(A-B)=\cos[(n+2)x-(n+1)x]$
$\Rightarrow \cos(nx+2x-nx-x)$
$\Rightarrow \cos x$=R.H.S
Hence proved.
answered Apr 17, 2014 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...