logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Trigonometric Functions
0 votes

Prove that $(\sin 3x+\sin x)\sin x+(\cos 3x-\cos x)\cos x=0$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $\cos A-\cos B=\cos A\cos B+\sin A\sin B$
  • $\cos^2A-\sin^2A=\cos 2A$
L.H.S
$(\sin 3x+\sin x)\sin x+(\cos 3x-\cos x)\cos x$
$\sin 3x.\sin x+\sin^2x+\cos 3x.\cos x-\cos^2x$
$\cos 3x.\cos x+\sin 3x.\sin x-(\cos^2x-\sin^2x)$
$\cos (3x-x)-\cos 2x$
$\cos 2x-\cos 2x=0$=R.H.S
Hence proved.
answered Apr 18, 2014 by sreemathi.v
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...