logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Trigonometric Functions
0 votes

Prove that $\large\frac{\tan A+\sec A-1}{\tan A-\sec A+1}=\frac{1+\sin A}{\cos A}$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $\sec^A-\tan^2A=1$
  • $\tan A=\large\frac{\sin A}{\cos A}$
  • $\sec A=\large\frac{1}{\cos A}$
L.H.S
$\large\frac{\tan A+\sec A-1}{\tan A-\sec A+1}$
$\large\frac{\tan A+\sec A-(\sec^2A-\tan^2A)}{\tan A-\sec A+1}$
$\large\frac{\tan A+\sec A-\big[(\sec A+\tan A)(\sec A-\tan A)\big]}{\tan A-\sec A+1}$
$\large\frac{\tan A+\sec A(1-\sec A+\tan A)}{\tan A-\sec A+1}$
$\tan A+\sec A=\large\frac{\sin A}{\cos A}+\frac{1}{\cos A}$
$\Rightarrow \large\frac{1+\sin A}{\cos A}$=R.H.S
Hence proved.
answered Apr 18, 2014 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...