logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Trigonometric Functions
0 votes

If $f(x)=\cos^2x+\sec^2x$,then

$\begin{array}{1 1}(A)\;f(x) < 1&(B)\;f(x) =1\\(C)\;2 < f(x) < 1&(D)\;f(x) \geq 2\end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $\cos^2x=1-\sin^2x$
  • $\sec^2x=1+\tan^2x$
$f(x)=\cos^2x+\sec^2x$
$\cos^2x=1-\sin^2x$
$\sec^2x=1+\tan^2x$
$f(x)=1-\sin^2x+\tan^2x+1$
$\Rightarrow 2+\large\frac{\sin^2x}{\cos^2x}$$-\sin^2x$
$\Rightarrow 2+\large\frac{\sin^2x-\sin^2x\cos^2x}{\cos^2x}$
$\Rightarrow 2+\large\frac{\sin^2x(1-\cos^2x)}{\cos^2x}$
$\Rightarrow 2+\large\frac{\sin^4x}{\cos^2x}$
Here $\large\frac{\sin^4x}{\cos^2x}$$ \geq 0$
$\therefore f(x) \geq 2$
Hence (D) is the correct answer.
answered Apr 21, 2014 by sreemathi.v
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...