Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Coordinate Geometry
0 votes

If the foci of the ellipse $\large\frac{x^2}{16}+\frac{y^6}{b^2}$$=1$ and the hyperbola. $\large\frac{x^2}{144}-\frac{y^2}{81}=\frac{1}{25}$ coincide, then the value of $b^2$ is

$\begin{array}{1 1}(A)\;1 \\(B)\;5 \\(C)\;7 \\(D)\;9 \end{array}$

Can you answer this question?

1 Answer

0 votes
For hyperbola
$\therefore e=\large\frac{15}{12}=\frac{5}{4}$
i.e $e > 1$
Also $a^2=\large\frac{144}{25}$
Hence the foci are $(\pm ae,o)$
i.e $ \bigg(\pm \large\frac{12}{5},\frac{5}{4} ,0 \bigg)$$= (\pm 3,0)$
Now, the foci coincide therefore for ellipse,
$ae= 3 \; or \;a^2e^2=9$
(or) $a^2 \bigg(1-\large\frac{b^2}{a^2} \bigg) $$=9$
or $16-9=b^2$
So $b^2=7$
Hence C is the correct answer.
answered Apr 21, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App