logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Trigonometric Functions
0 votes

$\cos 2\theta\cos 2\phi+\sin^2(\theta-\phi)-\sin^2(\theta+\phi)$ is equal to

$\begin{array}{1 1}(A)\;\sin 2(\theta+\phi)&(B)\;\cos 2(\theta+\phi)\\(C)\;\sin 2(\theta-\phi)&(D)\;\cos 2(\theta-\phi)\end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $\sin^2A-\sin^2B=\sin(A+B).\sin (A-B)$
$\cos 2\theta\cos 2\phi+\sin^2(\theta-\phi)-\sin^2(\theta+\phi)$
$\cos 2\theta\cos 2\phi+\sin 2\theta.\sin(-2\phi)$
$\cos 2\theta\cos 2\phi-\sin 2\theta.\sin2\phi$
$\cos (2\theta+2\phi)$
$\cos 2(\theta+\phi)$
Hence (B) is the correct answer.
answered Apr 21, 2014 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...