logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Coordinate Geometry
0 votes

The locus of a point $p(\alpha, \beta)$ moving under the condition that the line $y=\alpha x + \beta$ is a tangent to the hyperbola $\large\frac{x^2}{a^2} -\frac{y^2}{b^2}$$=1$ is

$\begin{array}{1 1}(A)\;a\; hyperbola \\(B)\;a\; parabola \\(C)\;an\; ellipse \\(D)\;a \;circle \end{array}$

Can you answer this question?
 
 

1 Answer

0 votes
If $ y=mx+c$ is tangent to hyperbola, then
$c^2=a^2m^2-b^2$
=> $ \beta^2=a^2 \alpha^2 -b^2$
$\therefore $Locus of P is $a^2x^2-y^2=b^2$
Which is a hyperbola.
Hence A is the correct answer.
answered Apr 21, 2014 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...