Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Coordinate Geometry
0 votes

A rectangular hyperbola whose cetre is C is cut by any circle of radius r in four points $P,Q,R$ and S. Then $CP^2+CQ^2+CR2+CS^2$ is equal to.

$\begin{array}{1 1}(A)\;r^2 \\(B)\;2r^2 \\(C)\;3\;r^2 \\(D)\;4\;r^2 \end{array}$

Can you answer this question?

1 Answer

0 votes
let the equation of the rectangular hyperbola be $xy=c^2$-----(1)
and equation of circle be $x^2+y^2=r^2$------(2)
Put $ y= \large\frac{c^2}{x}$ in (2) we get,
$x^2 +\large\frac{c^4}{c^2} $$=r^2$
Now, $CP^2+CQ^2+CR^2+CS^2$
=> $x_1^2+y_1^2+x_2^2+y_2^2+x_3^2+y_3^2+x_4^2+y_4^2$
=> $ \bigg( \sum \limits_{i=1}^{4} x_i \bigg)^2 - 2\sum x_1x_2 + $ $\bigg( \sum \limits_{i=1}^{4} y_i \bigg)^2 -2 \sum y_1y_2$
=> $ 2r^2+2r^2 $ from (3)
=> $4r^2$
Hence D is the correct answer.
answered Apr 21, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App