Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Trigonometric Functions
0 votes

If $\sin x=-\large\frac{2\sqrt 6}{5}$ and $x$ lies in quadrant III,find the values of $\cos x$ and $\cot x$

Can you answer this question?

1 Answer

0 votes
  • $\cot^2\theta=cosec^2\theta-1$
  • $\cot \theta=\sqrt{cosec^2\theta-1}$
  • $\tan \theta=\large\frac{\sin \theta}{\cos \theta}$
  • $\cot \theta=\large\frac{\cos \theta}{\sin \theta}$
Clearly $x$ lies in the third quadrant in which $\tan\theta$ and $\cot\theta$ are positive and all the other trignometric functions are negative.
Now,$\sin x=-\large\frac{2\sqrt 6}{5}$
$cosec x=\large\frac{1}{\sin x}=-\frac{5}{2\sqrt 6}$
$\therefore \cot \theta=\sqrt{cosec^2\theta-1}$
$\therefore \cot \theta=\sqrt{\large\frac{25}{4\times 6}-1}$
$\Rightarrow \sqrt{\large\frac{25-24}{24}}$
$\Rightarrow \sqrt{\large\frac{1}{24}}$
$\Rightarrow \sqrt{\large\frac{1}{2\sqrt 6}}$
$\cot x=\large\frac{\cos x}{\sin x}$
$\cos x=\cot x.\sin x$
$\Rightarrow \large\frac{1}{2\sqrt 6}\times \frac{-2\sqrt 6}{5}$
$\Rightarrow -\large\frac{1}{5}$
$\cos x=-\large\frac{1}{5},$$\cot x=\large\frac{1}{2\sqrt 6}$
answered Apr 22, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App