Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Trigonometric Functions
0 votes

If $\cos x=-\large\frac{\sqrt{15}}{4}$ and $\large\frac{\pi}{2}$$ \lt x $$ \lt \pi$ ,find the value of $\sin x$

$\begin{array}{1 1}(A)\;\large\frac{1}{2}&(B)\;\large\frac{1}{4}\\(C)\;\large\frac{1}{3}&(D)\;\large\frac{1}{5}\end{array} $

Can you answer this question?

1 Answer

0 votes
  • $\sin ^2x+\cos ^2x=1$
  • $\sin x=\sqrt{1-\cos^2x}$
Clearly $x$ lies in the II quadrant in which $\sin x$ and $cosec x$ are positive and all the other trigonometric functions are negative.
Now,$\cos x=-\large\frac{\sqrt{15}}{4}$
$\sin x=\sqrt{1-\cos ^2x}$
$\Rightarrow \sqrt{1-(-\large\frac{\sqrt 5}{4})^2}$
$\Rightarrow \sqrt{1-\large\frac{1 5}{16}}$
$\Rightarrow \sqrt{\large\frac{16-15}{16}}$
$\Rightarrow \large\frac{1}{4}$
$\therefore \sin x=\large\frac{1}{4}$
Hence (B) is the correct answer.
answered Apr 22, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App