logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

If $ f(x+y)=f(x).f(y)$ for all x and y and if $f(5)=2$ and $f'(0) =3$ find $f'(5)$

$\begin{array}{1 1}(A)\;2 \\(B)\;6 \\(C)\;7 \\(D)\;none\;of\;these \end{array}$

Can you answer this question?
 
 

1 Answer

0 votes
we have , $f'(a)=\lim \limits_{h \to 0} \large\frac{f(a+h)-f(a)}{h}$
=> $ f'(5) =\lim \limits_{h \to 0} \large\frac{f(5+h)-f(5)}{h}$
=> $ \lim \limits_{h \to 0}\large\frac{f(5+h)-f(5+0)}{h}$
=> $\lim \limits_{h \to 0} \large\frac{f(5).f(h) -f(5).f(0)}{h}$
=> $f(5) \lim \limits_{h \to 0} \large\frac{f(0+h)-f(0)}{h}$
=> $f(5) .f'(0) =2.3$
$\qquad=6$
Hence B is the correct answer.
answered Apr 22, 2014 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...