logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Determinants
0 votes

If the system of equations $x+ay+az=0,bx+y+bz=0$ and $cx+cy+z=0$ where $a,b,c$ are non-zero ,non unity has a non-trivial solution then the value of $\large\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}$ is

$\begin{array}{1 1}(A)\;-1&(B)\;0\\(C)\;1&(D)\;\large\frac{abc}{a^2+b^2+c^2}\end{array}$

Can you answer this question?
 
 

1 Answer

0 votes
For a non-trivial we must have
$\begin{vmatrix} 1& a& a\\b&1& b\\c& c& 1\end{vmatrix}=0$
Apply $C_1-C_2,C_2-C_3$ we get
$\begin{vmatrix} 1-a& 0& a\\b-1&1-b& b\\0& c-1& 1\end{vmatrix}=0$
$(1-a)[1-b-c(c-1)]+a(b-1)(c-1)=0$
$\large\frac{1}{c-1}+\frac{b}{b-1}+\frac{a}{a-1}=$$0$
$(\large\frac{1}{c-1}$$+1)+\frac{b}{b-1}+\frac{a}{a-1}$$=1$
$\large\frac{c}{c-1}+\frac{b}{b-1}+\frac{a}{a-1}$$=1$
$\large\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}$$=-1$
Hence (A) is the correct answer.
answered Apr 22, 2014 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...