Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Determinants
0 votes

The value of a for which the system of equations $a^3x+(a+1)^3y+(a+2)^3z=0,ax+(a+1)y+(a+2)z=0,x+y+z=0$ has a non-zero solution is

$\begin{array}{1 1}(A)\;1&(B)\;0\\(C)\;-1&(D)\;\text{None of these}\end{array}$

Can you answer this question?

1 Answer

0 votes
The system of equation has a non-zero solution
$\therefore \begin{vmatrix}a^3&(a+1)^3&(a+2)^3\\a&a+1&(a+2)\\1&1&1\end{vmatrix}=0$
Applying $C_2=C_2-C_1,C_3=C_3-C_2$ we get
$\Rightarrow 3a^2+3a+1-[3(a+1)^2+3(a+1)+1]=0$
$\Rightarrow 3a^2+3a+1-[3(a^2+1+2a)+3a+3+1]=0$
$\Rightarrow 3a^2+3a+1-[3a^2+3+6a+3a+4]=0$
$\Rightarrow 3a^2+3a+1-3a^2-3-6a-3a-4=0$
$\Rightarrow -6a-6=0$
$\Rightarrow -6a=6$
$\Rightarrow a=-1$
Hence (C) is the correct answer.
answered Apr 23, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App