logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Matrices
0 votes

If $p\neq a,q\neq b,r\neq c$ and $\begin{vmatrix}p&b&c\\p+a&q+b&2c\\a&b&r\end{vmatrix}=0$ then $\large\frac{p}{p-a}+\frac{q}{q-b}+\frac{r}{r-c}$=

$\begin{array}{1 1}(A)\;3&(B)\;2\\(C)\;1&(D)\;0\end{array}$

Can you answer this question?
 
 

1 Answer

0 votes
$\begin{vmatrix}p&b&c\\p+a&q+b&2c\\a&b&r\end{vmatrix}=0$
Applying $R_2=R_2-R_1$ we get
$\begin{vmatrix}p&b&c\\a&p&c\\a&b&r\end{vmatrix}=0$
Applying $R_1=R_1-R_2,R_2=R_2-R_3$ we get
$\begin{vmatrix}p-a&b-q&0\\0&q-b&c-r\\a&b&r\end{vmatrix}=0$
Applying $\large\frac{1}{p-a}$$C_1,\large\frac{1}{q-b}$$C_2,\large\frac{1}{r-c}$$C_3$
$\begin{vmatrix}1&-1&0\\0&1&-1\\\large\frac{a}{p-a}&\large\frac{b}{q-b}&\large\frac{r}{r-c}\end{vmatrix}=0$
Applying $C_1+C_2+C_3$ and expanding with $C_1$ we get
$\large\frac{p}{p-a}+\frac{q}{q-b}+\frac{r}{r-c}$=0
$\Rightarrow (\large\frac{a}{p-a}+$$1)+(\large\frac{b}{q-b}$$+1)+\large\frac{r}{r-c}$$=1+1$
$\Rightarrow\large\frac{p}{p-a}+\frac{q}{q-b}+\frac{r}{r-c}$=2
Hence (B) is the correct answer.
answered Apr 23, 2014 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...