logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Determinants
0 votes

If $A$ is a square matrix of order $n\times n$ then adj.(adj A) is equal to

$\begin{array}{1 1}(A)\;|A|^n&(B)\;|A|^{n-1}A\\(C)\;|A|^{n-2}A&(D)\;|A|^{n-3}A\end{array}$

Can you answer this question?
 
 

1 Answer

0 votes
Since for a square matrix A,
$A(Adj.A)=|A|I_n$
Replacing A by adj A we get
$(adj A)(adj.(adj.A))=|adj.A|I_n$
$\Rightarrow |A|^{n-1}I_n$
$|adj.A|=|A|^{n-1}$
$\Rightarrow (Aadj.A)(adj.adj.A)=|A|^{n-1}A$
$\Rightarrow (|A|I_n)(adj.adj.A)=|A|^{n-1}A$
$\Rightarrow adj.(adj.A)=|A|^{n-2}A$
Hence (C) is the correct answer.
answered Apr 24, 2014 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...