Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Determinants
0 votes

If $1+\sin x+\cos x\neq 0$ the value of $x$ for which $\begin{vmatrix}1&\sin x&\cos x\\\sin x&1&\cos x\\\cos x&\sin x&1\end{vmatrix}=0$ is

$\begin{array}{1 1}(A)\;n\pi+(-1)^n\large\frac{\pi}{2},\normalsize 2n\pi&(B)\;n\pi,2n\pi\pm \large\frac{\pi}{2}&\\(C)\;n\pi+(-1)^n\large\frac{\pi}{2},\normalsize 2n\pi\pm \large\frac{\pi}{2}&(D)\;\text{None of these}\end{array}$

Can you answer this question?

1 Answer

0 votes
$\begin{vmatrix}1&\sin x&\cos x\\\sin x&1&\cos x\\\cos x&\sin x&1\end{vmatrix}=0$
Applying $C_1+C_2+C_3$
$\Delta=\begin{vmatrix}1+\sin x+\cos x&\sin x&\cos x\\1+\sin x+\cos x&1&\cos x\\1+\sin x+\cos x&\sin x&1\end{vmatrix}$
Taking out $1+\sin x+\cos x$ we get
$\Delta=1+\sin x+\cos x\begin{vmatrix}1&\sin x&\cos x\\1&1&\cos x\\1&\sin x&1\end{vmatrix}$
Applying $R_1-R_2=R_1$
$(1+\sin x+\cos x)\begin{vmatrix}0&\sin x-1&0\\1&1&\cos x\\1&\sin x&1\end{vmatrix}$
$\Rightarrow (1+\sin x+\cos x)(\sin x-1)(1-\cos x)$
$\Delta=0\Rightarrow \sin x=1$
$\Rightarrow \cos x=1$
$\Rightarrow x=n\pi+(-1)^n\large\frac{\pi}{2}$$,2n\pi$
Hence (A) is the correct answer.
answered Apr 25, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App