Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Three Dimensional Geometry
0 votes

If the coordinates of the points $A, B, C, D$ be (1, 2, 3), (4, 5, 7), (-4, 3, -6) and (2, 9, 2) respectively, then find the angle between the lines $AB$ and $CD$.

$\begin{array}{1 1} (A) \;0^{\large\circ}\; or \;180^{\large\circ} \\ (B) \;90^{\large\circ}\;or \;270^{\large\circ} \\ (C)\; 60^{\large\circ}\; or \;120^{\large\circ} \\ (D)\; 30^{\large\circ}\; or \;150^{\large\circ} \end{array} $

Can you answer this question?

1 Answer

0 votes
  • If two lines are parallel,then $\large\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$
  • Where $(a_1,b_1,c_1)$ and $(a_2,b_2,c_2)$ are the direction ratios of the two lines.
Step 1:
Given the coordinates of $A,B,C$ and $D$ are $(1,2,3),(4,5,7),(-4,3,-6)$ and $(2,9,2)$ respectively.
We know the direction ratios of $AB$ are $(x_2-x_1),(y_2-y_1),(z_2-z_1)$
(i.e) (4-1),(5-2),(7-3)
$\Rightarrow (3,3,4)$
Step 2:
The direction ratios of $CD$ are $(x_4-x_3),(y_4-y_3),(z_4-z_3)$
(i.e) $(2-(-4)),(9-3),(2-(-6))$
$\Rightarrow (6,6,8)$
Therefore $\large\frac{a_1}{a_2}=\frac{3}{6}=\frac{1}{2}$
Step 3:
Hence we infer that $AB$ is parallel to $CD$
Therefore the angle between $AB$ and $CD$ is $0^{\large\circ}$ or $180^{\large\circ}$
answered Jun 3, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App