Ask Questions, Get Answers

Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives

Find points at which the tangent to the curve \(y = x^3 - 3x^2 - 9x + 7\) is parallel to the \(x\) - axis.

1 Answer

  • If $y=f(x)$,then $\big(\large\frac{dy}{dx}\big)_P$=slope of the tangent to $y=f(x)$ at point $P$.
  • If the tangent is parallel to $x$-axis,then $\large\frac{dy}{dx}$$=0$
Step 1:
Given : $y=x^3-3x^2-9x+7$
Differentiating w.r.t $x$ we get,
Since the tangent to the curve is parallel to the $x$-axis.We get $\large\frac{dy}{dx}$$=0$
$\Rightarrow 3x^2-6x-9=0$
$\Rightarrow 3(x^2-2x-3)=0$
$\Rightarrow 3(x-2)(x+1)=0$
Step 2:
When $x=2$
Step 3:
When $x=-1$
Hence the points are $(2,-20)$ and $(-1,12)$
answered Jul 10, 2013 by sreemathi.v

Related questions