Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

If \( A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta &\cos\theta \end{bmatrix} \) and $A + A'= I$, then find the value of \( \theta \).

Can you answer this question?

1 Answer

0 votes
  • If A_{i,j} be a matrix m*n matrix , then the matrix obtained by interchanging the rows and column of A is called as transpose of A.
  • The sum / difference $A(+/-)B$ of two $m$-by-$n$ matrices $A$ and $B$ is calculated entrywise: $(A (+/-) B)_{i,j} = A_{i,j} +/- B_{i,j}$ where 1 $\leq$ i $\leq$ m and 1 $\leq$j $\leq$ n.
  • An identity matrix or unit matrix of size n is the n × n square matrix with ones on the main diagonal and zeros elsewhere. An identity matrix of order 2, $I_{2}= \begin{bmatrix} 1 &0 \\ 0&1 \end{bmatrix}$
  • If the order of 2 matrices are equal, their corresponding elements are equal, i.e, if $A_{ij}=B_{ij}$, then any element $a_{ij}$ in matrix A is equal to corresponding element $b_{ij}$ in matrix B.
  • We can then match the corresponding elements and solve the resulting equations to find the values of the unknown variables.
$A= \begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix}$
Transpose can be obtained by changing the rows and column.
$A'= \begin{bmatrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \end{bmatrix}$
$A+A'= \begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix}+ \begin{bmatrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \end{bmatrix}$
$\qquad\;\;\;= \begin{bmatrix} cos\theta + cos\theta&-sin\theta+sin\theta \\ sin\theta-sin\theta & cos\theta+cos\theta \end{bmatrix}$
$\qquad\;\;\;=\begin{bmatrix}2cos\theta &0\\0 & 2cos\theta\end{bmatrix}$
$\begin{bmatrix}2cos\theta &0\\0 & 2cos\theta\end{bmatrix}=\begin{bmatrix}1 & 0\\0 & 1\end{bmatrix}$
The given two matrices are equal ,hence their corresponding elements should be equal.
$\Rightarrow 2cos\theta=1$
$\theta=\Large \frac{\pi}{3}$


answered Apr 10, 2013 by sharmaaparna1
edited Dec 24, 2013 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App