+91-9566306857  (or)  +91-9176170648

Ask Questions, Get Answers

Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives

Find the equation of all lines having slope $–1$ that are tangents to the curve $ y= \large\frac{1}{x-1}, $$ \: x \neq 1$

$\begin{array}{1 1} (A)\;x+y+1=0 ; x+y-3=0 \\ (B)\;x+y-1=0 ; x+y-3=0 \\ (C)\;x+y+1=0 ; x-y-3=0 \\ (D)\;x-y-1=0 ; x+y-3=0 \end{array} $

1 Answer

  • If $y=f(x)$,then $\big(\large\frac{dy}{dx}\big)_P$=slope of the tangent to $y=f(x)$ at the point $P$.
  • Equation of line with given two points is $\large\frac{x-x_1}{x_2-x_1}=\large\frac{y-y_1}{y_2-y_1}$
Step 1:
Given :$y=\large\frac{1}{x-1}$
Differentiating with respect to $x$ we get,
The given slope is $-1$
Therefore $\large\frac{dy}{dx}$$=-1$----(2)
Step 2:
Now equating equ(1) and (2) we get,
$\Rightarrow (x-1)^2=1$
$x-1=\pm 1$
$\Rightarrow x=2,0$
Step 3:
When $x=2,y=1$
When $x=0,y=-1$
Equation of a tangent is $y-y_1=m(x-x_1)$
Let $(x_1,y_1)$ be $(2,1)$ and $m=-1$,then
$\Rightarrow y-1=-x+2$
Step 4:
Let $(x_1,y_1)$ be $(0,-1)$ and $m=-1$,then
$\Rightarrow y+1=-x$
Hence the required lines are $x+y+1=0$ and $x+y-3=0$
answered Jul 10, 2013 by sreemathi.v

Related questions

Ask Question
Download clay6 mobile app