logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

Let A be a $\;3 \times 3\;$ matrix such that $\;A \begin{bmatrix} 1&2&3\\[0.3em] 0&2&3 \\[0.3em] 0&1&1 \end{bmatrix}= \begin{bmatrix} 0&0&1\\[0.3em] 1&0&0 \\[0.3em] 0&1&0 \end{bmatrix}\;$ then $\;A^{-1}\;$ is

$(a)\; \begin{bmatrix} 3&1&2\\[0.3em] 3&0&2 \\[0.3em] 1&0&1 \end{bmatrix}\qquad(b)\; \begin{bmatrix} 3&2&1\\[0.3em] 3&2&0 \\[0.3em] 1&1&0 \end{bmatrix}\qquad(c)\; \begin{bmatrix} 0&1&3\\[0.3em] 0&2&3 \\[0.3em] 1&1&1 \end{bmatrix}\qquad(d)\; \begin{bmatrix} 1&2&3\\[0.3em] 0&1&1 \\[0.3em] 0&2&3 \end{bmatrix}$

Can you answer this question?
 
 

Please log in or register to answer this question.

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...