Email
logo

Ask Questions, Get Answers

X
 
Questions  >>  Archives  >>  JEEMAIN-2014
Answer
Comment
Share
Q)

Let A be a $\;3 \times 3\;$ matrix such that $\;A \begin{bmatrix} 1&2&3\\[0.3em] 0&2&3 \\[0.3em] 0&1&1 \end{bmatrix}= \begin{bmatrix} 0&0&1\\[0.3em] 1&0&0 \\[0.3em] 0&1&0 \end{bmatrix}\;$ then $\;A^{-1}\;$ is

$(a)\; \begin{bmatrix} 3&1&2\\[0.3em] 3&0&2 \\[0.3em] 1&0&1 \end{bmatrix}\qquad(b)\; \begin{bmatrix} 3&2&1\\[0.3em] 3&2&0 \\[0.3em] 1&1&0 \end{bmatrix}\qquad(c)\; \begin{bmatrix} 0&1&3\\[0.3em] 0&2&3 \\[0.3em] 1&1&1 \end{bmatrix}\qquad(d)\; \begin{bmatrix} 1&2&3\\[0.3em] 0&1&1 \\[0.3em] 0&2&3 \end{bmatrix}$

Please log in or register to answer this question.

Help Clay6 to be free
Clay6 needs your help to survive. We have roughly 7 lakh students visiting us monthly. We want to keep our services free and improve with prompt help and advanced solutions by adding more teachers and infrastructure.

A small donation from you will help us reach that goal faster. Talk to your parents, teachers and school and spread the word about clay6. You can pay online or send a cheque.

Thanks for your support.
Continue
Please choose your payment mode to continue
Home Ask Homework Questions
...