Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

In Milikan's oil drop experiment,what is the terminal speed of an uncharged drop of radius $2\times 10^{-5}m$ and density $1.2\times 10^3Kgm^{-3}$?Take the viscocity of air at the temperature of the experiment is $1.8\times 10^{-5}pas$.How much is the viscous force on the drop at the speed?Neglect byoyancy of the drop due to air.

$\begin{array}{1 1}(A)\;4cm/s,4.2\times 10^{-10}N\\(B)\;4.8cm/s,8\times 10^{-9}N\\(C)\;5.8cm/s,3.9\times 10^{-10}N\\(D)\;5cm/s,3.8\times 10^{-9}N\end{array} $

Can you answer this question?

1 Answer

0 votes
Terminal speed =$5.8cm/s$
Viscous force =$3.9\times 10^{-10}N$
Radius of drop $r=2\times 10^{-5}m$
$\rho=1.2\times 10^3Kgm^{-3}$
Viscosity of air $\eta=1.8\times 10^{-5}pas$
Terminal velocity $V=\large\frac{2r^2-(\rho-\rho_0)g}{g\eta}$
$\Rightarrow \large\frac{2\times (2\times 10^{-5})^2(1.2\times 10^3-0)\times 9.8}{9\times 1.8\times 10^{-5}}$
$\Rightarrow 5.8cms^{-1}$
Here $\rho_0$(density of air)=0 to neglect byoyancy
$\therefore$ Terminal velocity =$5.8cms^{-1}$
$F=6\pi \eta r V$
$\;\;\;=3.9\times 10^{-10}N$
Hence (C) is the correct answer.
answered May 9, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App