$\begin{array}{1 1}(A)\;1880cm^3s^{-1}\\(B)\;1890cm^3s^{-1}\\(C)\;2200cm^3s^{-1}\\(D)\;2300cm^3s^{-1}\end{array} $

Let velocity at A & B are $V_A$ & $V_B$ respectively

By equation of continuity

$\large\frac{V_B}{V_A}=\frac{30}{15}$$=2$

By Bernoulli's equation

$P_A+\large\frac{1}{2}$$\rho V_A^2=P_B+\large\frac{1}{2}$$\rho V_B^2$

$P_A-P_B=\large\frac{1}{2}$$\rho (2V_A)^2-\large\frac{1}{2}$$\rho V_A^2=\large\frac{3}{2}$$\rho V_A^2$

$\Rightarrow 600=\large\frac{3}{2}$$(1000kgm^{-3})V_A^2$

$V_A=0.63ms^{-1}$

$\therefore$ Rate of flow =$(30cm^2)(0.63ms^{-1})$

$\Rightarrow 1890cm^3s^{-1}$

Hence (B) is the correct answer.

Ask Question

Tag:MathPhyChemBioOther

Take Test

...