logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Straight Lines
0 votes

Find angles between the lines $ \sqrt 3x+y=1$ and $x+\sqrt 3y=1$.

$\begin{array}{1 1}(A)\;30^{\circ} \: or \: 150^{\circ} \\(B)\; 45^{\circ} \: or \: 315^{\circ} \\(C)\; 60^{\circ} \: or \: 120^{\circ} \\(D)\;0^{\circ} \end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Angle between two lines is $ \theta = \tan^{-1} \bigg| \large\frac{m_1-m_2}{1+m_1m_2} \bigg|$ where $m_1$ and $m_2$ are the slopes of the two lines.
The given lines are $ \sqrt 3x+y=1$ -----------(1) and
$ \qquad \qquad \qquad \qquad x+\sqrt 3y=1$----------(2)
Slope of the line (1) is $m_1=-\sqrt 3$ and
Slope of the line (2) is $m_2= -\large\frac{1}{\sqrt 3}$.
$ \therefore \tan \theta = \bigg| \large\frac{m_1-m_2}{1+m_1m_2} \bigg|$
$ = \bigg| \large\frac{-\sqrt 3+\Large\frac{1}{\sqrt 3}}{1+(-\sqrt 3)\bigg( -\Large\frac{1}{\sqrt 3} \bigg) } \bigg|$
$ = \bigg| \large\frac{\Large\frac{-3+1}{\sqrt 3}}{1+1} \bigg|$
$ \therefore \tan \theta = \bigg| \large\frac{1}{\sqrt 3} \bigg|$
$ \Rightarrow \theta = 30^{\circ}\: or \: 180^{\circ}-30^{\circ}=150^{\circ}$.
Hence the angle between the two lines is $30^{\circ}$
answered May 10, 2014 by thanvigandhi_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...