logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Permutations and Combinations
0 votes

How many n-digit numbers are there with no digit repeated?

$\begin{array}{1 1}(A)\;4000\\(B)\;4536\\(C)\;4530\\(D)\;3539\end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $nP_r=\large\frac{n!}{(n-r)!}$
Let the digits be 0 to 9
4-digit numbers are $10P_4$
This includes those number which have o in the beginning(one thousand's place)
3-digit numbers out of 9 digits 1-9 are $9P_3$
$\therefore$ 4 digit numbers which do not have zero in the beginning(on the extreme left)
$\Rightarrow 10P_4-9P_3$
$\Rightarrow \large\frac{10!}{(10-4)!}-\frac{9!}{(9-3)!}$
$\Rightarrow \large\frac{10!}{6!}-\frac{9!}{6!}$
$\Rightarrow \large\frac{10\times 9\times 8\times 7\times 6\times 5\times 4\times 3\times 2\times 1}{6\times 5\times 4\times 3\times 2\times 1}-\frac{ 9\times 8\times 7\times 6\times 5\times 4\times 3\times 2\times 1}{6\times 5\times 4\times 3\times 2\times 1}$
$\Rightarrow 10\times 9\times 8\times 7-9\times 8\times 7$
$\Rightarrow 9\times 8\times 7[10-1]$
$\Rightarrow 9\times 9\times 8\times 7$
$\Rightarrow 4536$
Hence (B) is the correct answer.
answered May 13, 2014 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...